骨科期刊2020發表

Biodegradation ZK50 magnesium alloy compression screws: Mechanical properties, biodegradable characteristics and implant test.

Background: Magnesium alloy implants have lower stress load and can be absorbed gradually, but their degradation rates are too fast generally. A magnesium alloy contained 5% Zn and 0.5% Zr (ZK50) which have lower degradation rate are designed to be applied to cannulated bone screw. Methods: An oxidation heat treatment of 380 °C for 2 h proceeds to modify the ZK50 Mg alloy (ZK50-H). The microstructure observation, degradation tests and Biocompatibility analysis are proceeded between ZK50 and ZK50-H. Finally, a mini-pig implantation test is proceeded to provide a reference of implant application for future pre-clinical evaluation. Results: The heat treatment can improve the mechanical properties. A passive ceramic layer formed after simulated body fluid (SBF) solution immersion can restrict the degradation effectively. The cytotoxicity test shows the initial biosafety of ZK50 Mg alloy. A mini-pig implantation test of bone screw has proceeded to confirm the advanced biocompatibility. The ZK50-H screws can maintain enough support at least 8 weeks which the fracture of bone can get curing. The excellent osteoinduction of ZK50-H has a positive effect to growth of new bones and help the mini-pig regain heal faster in 12 weeks. Conclusion: This study shows ZK50-H Mg alloy screw is a feasible degradation implant and can be carried out the next-step clinical experiments.